1. RDS 备份
- RDS 支持自动备份
- 实时捕获事务日志
- 默认情况下启用,保留期为7天(0-35天保留期,0=禁用自动备份)
- 您可以提供备份窗口时间和备份保留天数
- 第一个备份是完整备份,后续备份是增量备份
- 数据存储在 S3 存储桶中(由 RDS 服务拥有和管理,您不会在 S3 控制台中看到它们)
- 建议使用 Multi-AZ 选项来避免备份运行时的性能问题
- 与 AWS Backup 服务集成以实现集中管理
- 支持 PITR,而快照则不支持
- 复制备份会变为快照,可以跨越账号、region
- Point-In-Time Recovery 时间间隔为 5 分钟
2. 从快照还原
- 只能恢复到新实例
- 一个实例可以有一个或多个数据库,所有这些数据库都将被恢复
- 要保留相同的名称,请先删除或重命名现有实例
- 无法直接从共享和加密的快照中恢复(先复制,然后从副本中恢复)
- 无法直接从另一个区域恢复(先复制,然后从副本恢复)
- 可以从 VPC 外的数据库实例快照恢复到 VPC 内(但相反则不行)
- 默认情况下,还原的集群使用:
- 新建安全组
- 默认参数组
- 与快照关联的选项组
- 从快照恢复时,请确保
- 选择正确的安全组以确保恢复的数据库的连接
- 为还原的数据库选择正确的参数组
- 建议保留快照的参数组,以帮助使用正确的参数组进行恢复
3. 导出快照到 S3
- 可以导出所有类型的备份(自动/手动或使用 AWS 备份服务创建的备份)
- 如何出口?
- 设置具有适当 IAM 权限的 S3 存储桶,并为 SSE 创建KMS密钥
- 使用控制台(Actions -> Export to Amazon S3)或使用 start Export task CLI 命令导出快照
- 导出在后台运行
- 不会影响数据库性能
- 以 Apache Parquet 格式导出的数据(压缩、一致)
- 允许您使用 Athena 或 Redshift Spectrum 分析数据库数据
4. 比较 RDS DR 策略
RTO Recovery Time Objective |
RPO Recovery Point Object |
Cost | Scope | |
---|---|---|---|---|
Automated backups | Good | Better | Low | Single Region |
Manual snapshots | Better | Good | Medium | Cross-Region |
Read replicas | Best | Best | High | Cross-Region |
5. 如何解决复制错误的建议
- 调整副本的大小以匹配源数据库(存储大小和数据库实例类)
- 对源数据库和副本使用兼容的数据库参数组设置
- 例如,读取副本允许的最大数据包必须与源数据库实例的数据包相同
- 监视副本实例的 Replication State 字段
- 如果 Replication State = Error,然后查看 Replication Error 字段中的错误详细信息
- 使用 RDS 事件通知获取有关此类副本问题的警报
- 写入读取复制副本上的表
- 将只读设置为0以使读取副本可写
- 仅用于维护任务(如仅在复制副本上创建索引)
- 如果您在读取副本上写入表,可能会使其与源数据库不兼容并破坏复制
- 因此,在完成维护任务后立即设置
read-only=1
- 只有像lnnoDB这样的事务存储引擎才支持复制,使用MylSAM这样的引擎会导致复制错误
- 使用不安全的非确定性查询(如SYSDATE)(可能会破坏复制)
- 您可以跳过复制错误(如果不是主要错误),也可以删除并重新创建复制副本
对于MySQL:
- 错误或数据不一致b/w源实例和replica
- 可能是由于 binlog 事件或 lnnoDB 重做日志在 replica 或源实例失败期间未刷新而发生的
- 必须手动删除并重新创建复制
- 预防性建议:
- sync_binlog=1
- innodb_flush_log_at_trx_commit=1
- innodb_support_xa=1
- 这些设置可能会降低性能(因此在转到生产前进行测试)
6. Aurora Replicas vs MySQL Replicas
Feature | Amazon Aurora Replicas | MySQL Replicas |
---|---|---|
Number of replicas | Up to 15 | Up to 5 |
Replication type | Asynchronous (milliseconds) | Asynchronous (seconds) |
Performance impact on primary | Low | High |
Replica location | In-region | Cross-region |
Act as failover target | Yes (no data loss) | Yes (potentially minutes of data loss) |
Automated failover | Yes | No |
Support for user-defined replication delay | No | Yes |
Support for different data or schema vs. primary | No | Yes |
7. Comparison of RDS Deployments
Read replicas | Multi-AZ deployments (Single-Region) | Multi-Region deployments | |
---|---|---|---|
Main purpose | Scalability | HA | DR and performance |
Replication method | Asynchronous (eventual consistency) | Synchronous | Asynchronous (eventual consistency) |
Asynchronous (Aurora) | |||
Accessibility | All replicas can be used for read scaling | Active-Passive (standby not accessible) | All regions can be used for reads |
Automated backups | No backups configured by default | Taken from standby | Can be taken in each region |
Taken from shared storage layer (Aurora) | |||
Instance placement | Within-AZ, Cross-AZ, or Cross-Region | At least two AZs within region | Each region can have a Multi-AZ deployment |
Upgrades | Independent from source instance | On primary | Independent in each region |
All instances together (Aurora) | |||
DR (Disaster Recovery) | Can be manually promoted to a standalone instance | Automatic failover to standby | Aurora allows promotion of a secondary region to be the master |
Can be promoted to primary (Aurora) | Automatic failover to read replica (Aurora) |
8. DynamoDB Terminology Compared to SQL
SQL / RDBMS | DynamoDB |
---|---|
Tables | Tables |
Rows | Items |
Columns | Attributes |
Primary Keys - Multicolumn | Primary Keys - Mandatory, minimum one and maximum two attributes |
Indexes | Local Secondary Indexes |
Views | Global Secondary Indexes |
9. AWS 数据库之间的比较
Database | Type of data | Workload | Size | Performance | Operational overhead |
---|---|---|---|---|---|
RDS DBs | Structured | Relational / OLTP / simple OLAP | Low TB range | Mid-to-high throughtput, low latency | Moderate |
Aurora Mysql | Structured | Relational / OLTP / simple OLAP | Mid TB range | High throughtput, low latency | Low-to-moderate |
Aurora PostgrSQL | Structured | Relational / OLTP / simple OLAP | Mid TB range | High throughtput, low latency | Low-to-moderate |
Redshift | Structured / Semi-structured | Relational / OLAP / DW | PB range | Mid-to-high latency | Moderate |
DynamoDB | Semi-structured | Non-relational / Key-Value / OLTP / Document store | High TB range | Ultra-high throughtput, low latency, ultra-low latency with DAX | Low |
ElastiCache | Semi-structured / Unstructured | Non-relational / In-memory caching / Key-Value | Low TB range | High throughtput, ultra-low latency | Low |
Neptune | Graph data | Highly connected graph datasets | Mid TB range | High throughtput, ultra-low latency | Low |